Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Stem Cell ; 31(4): 554-569.e17, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579685

RESUMO

The YAP/Hippo pathway is an organ growth and size regulation rheostat safeguarding multiple tissue stem cell compartments. LATS kinases phosphorylate and thereby inactivate YAP, thus representing a potential direct drug target for promoting tissue regeneration. Here, we report the identification and characterization of the selective small-molecule LATS kinase inhibitor NIBR-LTSi. NIBR-LTSi activates YAP signaling, shows good oral bioavailability, and expands organoids derived from several mouse and human tissues. In tissue stem cells, NIBR-LTSi promotes proliferation, maintains stemness, and blocks differentiation in vitro and in vivo. NIBR-LTSi accelerates liver regeneration following extended hepatectomy in mice. However, increased proliferation and cell dedifferentiation in multiple organs prevent prolonged systemic LATS inhibition, thus limiting potential therapeutic benefit. Together, we report a selective LATS kinase inhibitor agonizing YAP signaling and promoting tissue regeneration in vitro and in vivo, enabling future research on the regenerative potential of the YAP/Hippo pathway.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Proteínas de Sinalização YAP , Animais , Humanos , Camundongos , Proliferação de Células , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP/agonistas , Proteínas de Sinalização YAP/efeitos dos fármacos , Proteínas de Sinalização YAP/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
2.
ACS Med Chem Lett ; 14(8): 1054-1062, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37583811

RESUMO

Toll-like receptor (TLR) 7 and TLR8 are endosomal sensors of the innate immune system that are activated by GU-rich single stranded RNA (ssRNA). Multiple genetic and functional lines of evidence link chronic activation of TLR7/8 to the pathogenesis of systemic autoimmune diseases (sAID) such as Sjögren's syndrome (SjS) and systemic lupus erythematosus (SLE). This makes targeting TLR7/8-induced inflammation with small-molecule inhibitors an attractive approach for the treatment of patients suffering from systemic autoimmune diseases. Here, we describe how structure-based optimization of compound 2 resulted in the discovery of 34 (MHV370, (S)-N-(4-((5-(1,6-dimethyl-1H-pyrazolo[3,4-b]pyridin-4-yl)-3-methyl-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridin-1-yl)methyl)bicyclo[2.2.2]octan-1-yl)morpholine-3-carboxamide). Its in vivo activity allows for further profiling toward clinical trials in patients with autoimmune disorders, and a Phase 2 proof of concept study of MHV370 has been initiated, testing its safety and efficacy in patients with Sjögren's syndrome and mixed connective tissue disease.

3.
ACS Med Chem Lett ; 13(4): 658-664, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35450354

RESUMO

Inappropriate activation of TLR7 and TLR8 is linked to several autoimmune diseases, such as lupus erythematosus. Here we report on the efficient structure-based optimization of the inhibition of TLR8, starting from a co-crystal structure of a small screening hit. Further optimization of the physicochemical properties for cellular potency and expansion of the structure-activity relationship for dual potency finally resulted in a highly potent TLR7/8 antagonist with demonstrated in vivo efficacy after oral dosing.

4.
J Med Chem ; 63(15): 8276-8295, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32786235

RESUMO

Inappropriate activation of endosomal TLR7 and TLR8 occurs in several autoimmune diseases, in particular systemic lupus erythematosus (SLE). Herein, the development of a TLR8 antagonist competition assay and its application for hit generation of dual TLR7/8 antagonists are reported. The structure-guided optimization of the pyridone hit 3 using this biochemical assay in combination with cellular and TLR8 cocrystal structural data resulted in the identification of a highly potent and selective TLR7/8 antagonist (27) with in vivo efficacy. The two key steps for optimization were (i) a core morph guided by a TLR7 sequence alignment to achieve a dual TLR7/8 antagonism profile and (ii) introduction of a fluorine in the piperidine ring to reduce its basicity, resulting in attractive oral pharmacokinetic (PK) properties and improved TLR8 binding affinity.


Assuntos
Lúpus Eritematoso Sistêmico/tratamento farmacológico , Piridonas/química , Piridonas/farmacologia , Receptor 7 Toll-Like/antagonistas & inibidores , Receptor 8 Toll-Like/antagonistas & inibidores , Animais , Células Cultivadas , Descoberta de Drogas , Humanos , Indazóis/química , Indazóis/farmacocinética , Indazóis/farmacologia , Lúpus Eritematoso Sistêmico/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Moleculares , Piridonas/farmacocinética , Ratos Sprague-Dawley , Receptor 7 Toll-Like/química , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/química , Receptor 8 Toll-Like/metabolismo
5.
J Med Chem ; 59(16): 7544-60, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27502541

RESUMO

Cancer Osaka thyroid (COT) kinase is an important regulator of pro-inflammatory cytokines in macrophages. Thus, pharmacologic inhibition of COT should be a valid approach to therapeutically intervene in the pathogenesis of macrophage-driven inflammatory diseases such as rheumatoid arthritis. We report the discovery and chemical optimization of a novel series of COT kinase inhibitors, with unprecedented nanomolar potency for the inhibition of TNFα. Pharmacological profiling in vivo revealed a high metabolism of these compounds in rats which was demonstrated to be predominantly attributed to aldehyde oxidase. Due to the very low activity of hepatic AO in the dog, the selected candidate 32 displayed significant blood exposure in dogs which resulted in a clear prevention of inflammation-driven lameness. Taken together, the described compounds both potently and selectively inhibit COT kinase in primary human cells and ameliorate inflammatory pathologies in vivo, supporting the notion that COT is an appropriate therapeutic target for inflammatory diseases.


Assuntos
Descoberta de Drogas , Imidazóis/farmacologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Quinolinas/farmacologia , Animais , Cristalografia por Raios X , Cães , Relação Dose-Resposta a Droga , Humanos , Imidazóis/síntese química , Imidazóis/química , MAP Quinase Quinase Quinases/metabolismo , Masculino , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas/metabolismo , Quinolinas/síntese química , Quinolinas/química , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/antagonistas & inibidores
6.
J Biol Chem ; 290(24): 15210-8, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-25918157

RESUMO

Macrophages are important cellular effectors in innate immune responses and play a major role in autoimmune diseases such as rheumatoid arthritis. Cancer Osaka thyroid (COT) kinase, also known as mitogen-activated protein kinase kinase kinase 8 (MAP3K8) and tumor progression locus 2 (Tpl-2), is a serine-threonine (ST) kinase and is a key regulator in the production of pro-inflammatory cytokines in macrophages. Due to its pivotal role in immune biology, COT kinase has been identified as an attractive target for pharmaceutical research that is directed at the discovery of orally available, selective, and potent inhibitors for the treatment of autoimmune disorders and cancer. The production of monomeric, recombinant COT kinase has proven to be very difficult, and issues with solubility and stability of the enzyme have hampered the discovery and optimization of potent and selective inhibitors. We developed a protocol for the production of recombinant human COT kinase that yields pure and highly active enzyme in sufficient yields for biochemical and structural studies. The quality of the enzyme allowed us to establish a robust in vitro phosphorylation assay for the efficient biochemical characterization of COT kinase inhibitors and to determine the x-ray co-crystal structures of the COT kinase domain in complex with two ATP-binding site inhibitors. The structures presented in this study reveal two distinct ligand binding modes and a unique kinase domain architecture that has not been observed previously. The structurally versatile active site significantly impacts the design of potent, low molecular weight COT kinase inhibitors.


Assuntos
MAP Quinase Quinase Quinases/química , Dobramento de Proteína , Proteínas Proto-Oncogênicas/química , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica , Proteínas Recombinantes/química
7.
J Biol Chem ; 289(16): 10975-10987, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24596089

RESUMO

The metabotropic glutamate receptor subtype 7 (mGlu7) is an important presynaptic regulator of neurotransmission in the mammalian CNS. mGlu7 function has been linked to autism, drug abuse, anxiety, and depression. Despite this, it has been difficult to develop specific blockers of native mGlu7 signaling in relevant brain areas such as amygdala and limbic cortex. Here, we present the mGlu7-selective antagonist 7-hydroxy-3-(4-iodophenoxy)-4H-chromen-4-one (XAP044), which inhibits lateral amygdala long term potentiation (LTP) in brain slices from wild type mice with a half-maximal blockade at 88 nm. There was no effect of XAP044 on LTP of mGlu7-deficient mice, indicating that this pharmacological effect is mGlu7-dependent. Unexpectedly and in contrast to all previous mGlu7-selective drugs, XAP044 does not act via the seven-transmembrane region but rather via a binding pocket localized in mGlu7's extracellular Venus flytrap domain, a region generally known for orthosteric agonist binding. This was shown by chimeric receptor studies in recombinant cell line assays. XAP044 demonstrates good brain exposure and wide spectrum anti-stress and antidepressant- and anxiolytic-like efficacy in rodent behavioral paradigms. XAP044 reduces freezing during acquisition of Pavlovian fear and reduces innate anxiety, which is consistent with the phenotypes of mGlu7-deficient mice, the results of mGlu7 siRNA knockdown studies, and the inhibition of amygdala LTP by XAP044. Thus, we present an mGlu7 antagonist with a novel molecular mode of pharmacological action, providing significant application potential in psychiatry. Modeling the selective interaction between XAP044 and mGlu7's Venus flytrap domain, whose three-dimensional structure is already known, will facilitate future drug development supported by computer-assisted drug design.


Assuntos
Tonsila do Cerebelo/metabolismo , Ansiedade/metabolismo , Comportamento Animal , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Receptores de Glutamato Metabotrópico/metabolismo , Estresse Psicológico/metabolismo , Tonsila do Cerebelo/patologia , Animais , Ansiedade/tratamento farmacológico , Ansiedade/genética , Ansiedade/patologia , Células CHO , Cricetinae , Cricetulus , Células L , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/genética , Camundongos , Camundongos Mutantes , Estrutura Terciária de Proteína , Receptores de Glutamato Metabotrópico/genética , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/genética , Estresse Psicológico/patologia
8.
ACS Med Chem Lett ; 2(1): 58-62, 2011 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24900255

RESUMO

A focused chemical optimization effort of compound 1 based on metabolite elucidation is described, resulting in 15i, a highly potent and selective mGlu5 receptor antagonist with an improved pharmacokinetic profile compared to 1. Characterization of 15i in vivo in the fear-potentiated startle (FPS) paradigm revealed a robust reduction of conditioned fear behavior. This effect nicely correlates with the rat brain pharmacokinetics.

9.
Bioorg Med Chem Lett ; 20(1): 184-8, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19931453

RESUMO

High throughput screening led to the identification of nicotinamide derivative 2 as a structurally novel mGluR5 antagonist. Optimization of the modular scaffold led to the discovery of 16m, a compound with high affinity for mGluR5 and excellent selectivity over other glutamate receptors. Compound 16m exhibits a favorable PK profile in rats, robust anxiolytic-like effects in three different animal models of fear and anxiety, as well as a good PK/PD correlation.


Assuntos
Amidas/química , Aminopiridinas/química , Ansiolíticos/química , Peptídeos/química , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Administração Oral , Amidas/síntese química , Amidas/farmacocinética , Aminopiridinas/síntese química , Aminopiridinas/farmacocinética , Animais , Ansiolíticos/síntese química , Ansiolíticos/farmacocinética , Humanos , Microssomos Hepáticos/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/metabolismo , Relação Estrutura-Atividade
10.
Org Lett ; 5(8): 1179-81, 2003 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-12688713

RESUMO

[reaction: see text] A sequential solid-phase peptide synthesis was developed using both photolabile linker and protecting groups. The chromatic sequential lability between a tert-butyl ketone-derived linker (sensitive to irradiation at 305 nm) and a nitroveratryloxycarbonyl (NVOC) group (sensitive at 360 nm) was exploited to prepare Leu-Enkephalin in a 55% overall yield. This new strategy allows the preparation of peptides in essentially neutral medium, by avoiding the use of common deprotection reagents such as trifluoroacetic acid or piperidine.

11.
J Am Chem Soc ; 124(19): 5380-401, 2002 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-11996579

RESUMO

A convergent, enantioselective synthetic route to the natural product neocarzinostatin chromophore (1) is described. Synthesis of the chromophore aglycon (2) was targeted initially. Chemistry previously developed for the synthesis of a neocarzinostatin core model (4) failed in the requisite 1,3-transposition of an allylic silyl ether when applied toward the preparation of 2 with use of the more highly oxygenated substrates 27 and 54. An alternative synthetic plan was therefore developed, based upon a proposed reduction of the epoxy alcohol 58 to form the aglycon 2, a transformation that was achieved in a novel manner, using a combination of the reagents triphenylphosphine, iodine, and imidazole. The successful route to 1 and 2 began with the convergent coupling of the epoxydiyne 15, obtained in 9 steps (43% overall yield) from D-glyceraldehyde acetonide, and the cyclopentenone (+)-14, prepared in one step (75-85% yield) from the prostaglandin intermediate (+)-16, affording the alcohol 22 in 80% yield and with > or =20:1 diastereoselectivity. The alcohol 22 was then converted into the epoxy alcohol 58 in 17 steps with an average yield of 92% and an overall yield of 22%. Key features of this sequence include the diastereoselective Sharpless asymmetric epoxidation of allylic alcohol 81 (98% yield); intramolecular acetylide addition within the epoxy aldehyde 82, using Masamune's lithium diphenyltetramethyldisilazide base (85% yield); selective esterification of the diol 84 with the naphthoic acid 13 followed by selective cleavage of the chloroacetate protective group in situ to furnish the naphthoic acid ester 85 in 80% yield; and elimination of the tertiary hydroxyl group within intermediate 88 using the Martin sulfurane reagent (79% yield). Reductive transposition of the product epoxy alcohol (58) then formed neocarzinostatin chromophore aglycon (2, 71% yield). Studies directed toward the glycosylation of 2 focused initially on the preparation of the N-methylamino --> hydroxyl replacement analogue 3, an alpha-D-fucose derivative of neocarzinostatin chromophore, formed in 42% yield by a two-step Schmidt glycosylation-deprotection sequence. For the synthesis of 1, an extensive search for a suitable 2'-N-methylfucosamine glycosyl donor led to the discovery that the reaction of 2 with the trichloroacetimidate 108, containing a free N-methylamino group, formed the alpha-glycoside 114 selectively in the presence of boron trifluoride diethyl etherate. Subsequent deprotection of 114 under mildly acidic conditions then furnished the labile chromophore (1). The synthetic route was readily modified for the preparation of singly and doubly (3)H- and (14)C-labeled 1, compounds unavailable by other means, for studies of the mechanism of action of neocarzinostatin in vivo.


Assuntos
Antibióticos Antineoplásicos/síntese química , Zinostatina/síntese química , Radioisótopos de Carbono , Enedi-Inos , Glicosilação , Marcação por Isótopo/métodos , Modelos Moleculares , Estereoisomerismo , Trítio , Zinostatina/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...